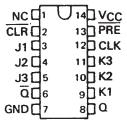
- Package Options Include Plastic and Ceramic DIPs and Ceramic Flat Packages
- Dependable Texas Instruments Quality and Reliability

description

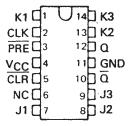
These J-K flip-flops are based on the master-slave principle and each has AND gate inputs for entry into the master section which are controlled by the clock pulse. The clock pulse also regulates the state of the coupling transistors which connect the master and slave sections. The sequence of operation is as follows:

- 1. Isolate slave from master
- 2. Enter information from AND gate inputs to master
- 3. Disable AND gate inputs
- 4. Transfer information from master to slave

The logical states of the J and K inputs must not be allowed to change when the clock pulse is in a high state.

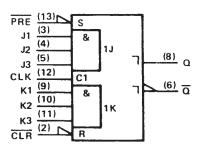

The SN5472, and the SN54H72 are characterized for operation over the full military temperature range of $-55\,^{\circ}\text{C}$ to 125 $^{\circ}\text{C}$. The SN7472 is characterized for operation from 0 $^{\circ}\text{C}$ to 70 $^{\circ}\text{C}$.

FUNCTION TABLE


	INP	OUTPUTS					
PRE	CLR	CLK	J	K	Q	ā	
L	Н	X	X	Х	н	L	
н	L	X	X	X	L	Н	
L	L	X	Х	Х	Н [†]	H [†]	
Н	н	几	L	L	a 0	\overline{a}_0	
Н	Н	Т	Н	L	н	L	
н	Н	T	L	н	L	н	
Н	н	Л.	Н	Н	TOGGLE		

[†] This configuration is nonstable; that is, it will not persist when either preset or clear returns to its inactive (high) level.

SN5472 . . . J PACKAGE SN7472 . . . N PACKAGE (TOP VIEW)



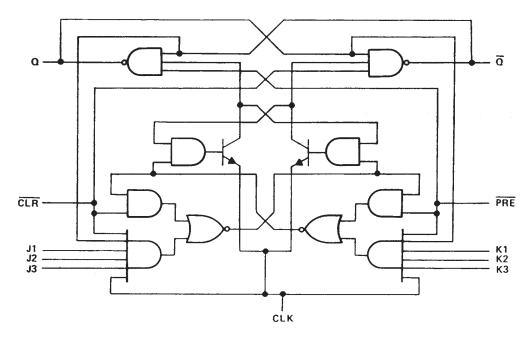
SN5472...W PACKAGE (TOP VIEW)

NC - No internal connection

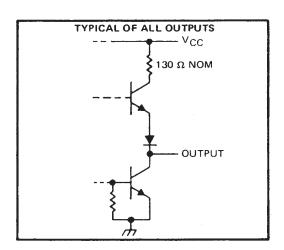
logic symbol‡

[‡]This symbol is in accordance with ANSI/IEEE Std. 91-1984 and IEC Publication 617-12.

positive logic


$$J = J1 \cdot J2 \cdot J3$$

$$K = K1 \cdot K2 \cdot K3$$


Pin numbers shown are for J and N packages.

logic diagram (positive logic)

schematics of inputs and outputs

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Supply voltage, VCC (see Note	1)	7 V
	• • • • • • • • • • • • • • • • • • • •	
Operating free-air temperature:	SN54'	– 55°C to 125°C
	SN74'	
Storage temperature range	• • • • • • • • • • • • • • • • • • • •	-65° C to 150° C
NOTE 1: Voltage values are with respect to		

recommended operating conditions

			SN5472			SN7472			UNIT
			MIN	NOM	MAX	MIN	NOM	MAX	UNII
Vcc	Supply voltage		4.5	5	5,5	4.75	5	5,25	V
VIH						2			٧
VIL	Low-level input voltage				8.0			8.0	٧
ЮН	High-level output current				- 0.4			- 0.4	mA
loL	Low-level output current				16			16	mA
	Pulse duration	CLK high	20			20			
t _w		CLK low	47			47		<u> </u>	ns
		PRE or CLR	25			25			
t _{su}	Input setup time before CLK†		0			0			ns
th	Input hold time-data after CLK ↓		0			0			ns
TA	Operating free-air temperature		- 55		125	0		70	°C

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER		TEST CONDITIONS †		SN5472		SN7472			
				TYP‡	MAX	MIN	TYP‡	MAX	UNIT
VIK		V _{CC} = MIN, I _I = - 12 mA			- 1.5			- 1.5	٧
VOH		$V_{CC} = MIN$, $V_{IH} = 2 V$, $V_{IL} = 0.8 V$, $I_{OH} = -0.4 \text{ mA}$	2.4	3.4		2.4	3.4		٧
VOL		V _{CC} = MIN, V _{IH} = 2 V, V _{IL} = 0.8 V, I _{OL} = 16 mA		0.2	0.4		0.2	0.4	٧
4		V _{CC} = MAX, V ₁ = 5.5 V			1			1	mA
I _{IH}	Jor K All other	V _{CC} = MAX, V _I = 2.4 V			40 80			40 80	μА
	J or K				- 1.6			- 1.6	
11L	All other	$V_{CC} = MAX$, $V_1 = 0.4 V$			- 3.2			- 3.2	mA
los§		V _{CC} = MAX	- 20		- 57	- 18		57	mA
lcc		V _{CC} = MAX, See Note 2		10	20		10	20	mA

[†] For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.

switching characteristics, VCC = 5 V, TA = 25°C (see note 3)

PARAMETER	FROM (INPUT)	TỌ (OUTPUT)	TEST CONDITIONS	MIN	TYP	MAX	UNIT
fmax				15	20		MHz
^t PLH	PRE or CLR	Ω or $\overline{\Omega}$			16	25	ns
^t PHL			$R_L = 400 \Omega$, $C_L = 15 pF$		25	40	ns
t _{PLH}					16	25	ns
[†] PHL					25	40	ns

NOTE 3: Load circuits and voltage waveforms are shown in Section 1.

[‡] All typical values are at $V_{CC} = 5 \text{ V}$, $T_A = 25^{\circ}\text{C}$.

[§] Not more than one output should be shorted at a time.

NOTE 2: With all outputs open, I_{CC} is measured with the Q and Q outputs high in turn. At the time of measurement, the clock input is grounded.